Modulation of High-Voltage Activated Ca2+ Channels by Membrane Phosphatidylinositol 4,5-Bisphosphate
نویسندگان
چکیده
Modulation of voltage-gated Ca(2+) channels controls activities of excitable cells. We show that high-voltage activated Ca(2+) channels are regulated by membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) with different sensitivities. Plasma membrane PIP(2) depletion by rapamycin-induced translocation of an inositol lipid 5-phosphatase or by a voltage-sensitive 5-phosphatase (VSP) suppresses Ca(V)1.2 and Ca(V)1.3 channel currents by approximately 35% and Ca(V)2.1 and Ca(V)2.2 currents by 29% and 55%, respectively. Other Ca(V) channels are less sensitive. Inhibition is not relieved by strong depolarizing prepulses. It changes the voltage dependence of channel gating little. Recovery of currents from inhibition needs intracellular hydrolysable ATP, presumably for PIP(2) resynthesis. When PIP(2) is increased by overexpressing PIP 5-kinase, activation and inactivation of Ca(V)2.2 current slow and voltage-dependent gating shifts to slightly higher voltages. Thus, endogenous membrane PIP(2) supports high-voltage activated L-, N-, and P/Q-type Ca(2+) channels, and stimuli that activate phospholipase C deplete PIP(2) and reduce those Ca(2+) channel currents.
منابع مشابه
Presynaptic inhibition via a phospholipase C- and phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca2+ channels.
Presynaptic inhibition of transmitter release is commonly mediated by a direct interaction between G protein betagamma subunits and voltage-activated Ca2+ channels. To search for an alternative pathway, the mechanisms by which presynaptic bradykinin receptors mediate an inhibition of noradrenaline release from rat superior cervical ganglion neurons were investigated. The peptide reduced noradre...
متن کاملContrasting effects of phosphatidylinositol 4,5‐bisphosphate on cloned TMEM16A and TMEM16B channels
BACKGROUND AND PURPOSE Ca2+ -activated Cl- channels (CaCCs) are gated open by a rise in intracellular Ca2+ concentration ([Ca2+ ]i ), typically provoked by activation of Gq -protein coupled receptors (Gq PCR). Gq PCR activation initiates depletion of plasmalemmal phosphatidylinositol 4,5-bisphosphate (PIP2 ). Here, we determined whether PIP2 acts as a signalling lipid for CaCCs coded by the TME...
متن کاملVoltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis
TRPV3 is a thermosensitive channel that is robustly expressed in skin keratinocytes and activated by innocuous thermal heating, membrane depolarization, and chemical agonists such as 2-aminoethyoxy diphenylborinate, carvacrol, and camphor. TRPV3 modulates sensory thermotransduction, hair growth, and susceptibility to dermatitis in rodents, but the molecular mechanisms responsible for controllin...
متن کاملMembrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca2+ channels.
The β-subunits of voltage-gated Ca(2+) (Ca(V)) channels regulate the functional expression and several biophysical properties of high-voltage-activated Ca(V) channels. We find that Ca(V) β-subunits also determine channel regulation by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). When Ca(V)1.3, -2.1, or -2.2 channels are cotransfected with the β3-subunit, a cytosolic...
متن کاملModulation of Gq-protein-coupled inositol trisphosphate and Ca2+ signaling by the membrane potential.
Gq-protein-coupled receptors (GqPCRs) are widely distributed in the CNS and play fundamental roles in a variety of neuronal processes. Their activation results in phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and Ca2+ release from intracellular stores via the phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3) signaling pathway. Because early GqPCR signaling events occur at the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 67 شماره
صفحات -
تاریخ انتشار 2010